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1. We shall consider a body made of a material subject to creep; let it 
occupy the volune V, bounded by the surface S. On part S, of S let there 
be given the stresses 

0% co5 nx + TXy co9 ny + 7r. cos nz = f, ew) w 

on part S, the components of the velocity vector 

vx = vZ*’ vy = vy’, us = vz’z’ (1.2) 

Inside the body one has the equilibriun equations 

Here and in what follows the symbol kyz) denotes that the unwritten 
formulas or expressions of cosqonents are to be determined by cyclic 
permutation of the letters x, y, z. 

The surface loading and body forces may, generally speaking, depend on 
time t. We will assume that the coqonents of the strain-rates 

a% 
E,=-----,..., q 

au* au, 

& ru =ay+x,... &l/z) (1.4) 

are determined by the equations of the theory of creep of Kachanov I1 1 

where the components of creep t,‘, qxYc, . . . are known functions of the 
stresses and time t: 

ExC = F (T, t) (ox - 01, ?.$ = 2F (7’, t)lxy (1.6) 

(T is the intensity of the shear stresses). 
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‘Ik initial elastic state of stress of the body (for t E 0) is 
ass-d to be known: 

8.&E 8%. (2. y, e), . . * , TX@ = TX& (z, Y, 4 tW@ u *7) 

2. ‘he considered interval of time will be subdivided by the points 
t = 0, t = tlr l .*, t= t. into small segments At (which, generally 
speaking, may not be equai’to’each other). 

Differentiating with respect to time the static boundary conditions 
(1.1) and the equilibrium equations (1.31, we obtain 

In the equations (1,4), (1.51, (2.1) and (2.2) we set t = ti and re- 
place the time derivatives by finite differences 

a% 
at 

I 

‘iox 
t=tj = 7 (we 

We then obtain the following system of equations for the stress and 
strain increments: 

(2.3) 

(2.5) 

Ihe boundary conditions (2.1), (1.2) give 

Ao, cos nx + AT,# cos ny + AT*,, cos nz = Af, or S1 W@) (2.6) 
Au, = Au%* or SS (2.71 

where Au, = ex (,+A& A+* = ox’ ItEt,At etc. are the inewts of 
the displacemsnt caqonenta in the body and on the surface in time At. 
Obviously 

6AU, dAU, CVAU, 
-- Ass-- Bz , . . . , A7,=--@--+-T (xY@ (2.8) 

‘l&s, tlie determination of the increments of stresses snd defomaations 
in the time At are reduced to a peculiar linear problem which in mauy 
respects is analogous to a problem of thernmelasticity. lhe diffennce 
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from the last consists only of the 
formations 6 x, . . , , 6%, calculated 

aqrrationr of unsteady creep lB7 

fact that the given additional de- 
in accordance with (1.61, (2.5) from 

6 x = IF (T, t) (a, - a)] At, $., = 2 If”’ (T, tf 7,J At 
for t = ti. a, = axi, . . . cw) (2.9) 

are present in (2.4) in the expressions for the extensions as well as 
for the shears, and, generally speaking, 6, f S f Sz. Using (2.9) we 
note that the supplementary deformations satis y the condition of in- 3 
coqwessibility 

6, -i- 6, + 6, = 0 (2.10! 

It is not difficult to demonstrate (for exanqle, by constructing with 
the aid of (2.31, (2.41, (2.61, (2.81 and (2.101 the equilibriun equa- 
tions in terms of displacements) that the determination of the displace- 
ments hul,Auy and hu, in the problem under consideration reduces to a 
traditional isothermal problem of the theory of elasticity with the 
additional loadings 

“f,- -A [8,cosnr+~ (txY co8 ny + t,, cos nz)] ewe (2.11) 

on the surface S, and 

(2.12) 

throughout the body. 

‘lhe analysis of unsteady creep of a body thus reduces to the evalua- 
tion of increments in the stresses and deformations for consecutive small 
time intervals At. ‘lhe additional loads at each stage must be calculat- 
ed from the formulas (2.91, (2.11) and (2.12) using the results of the 
evaluation of the preceding integral. lbe initial values for this pro- 
cess are given by the solution (1.71. 

In the case of a uniform state of stress (for exanrple, in the problem 
of stress relaxation of a rod) the stated numerical process reduces to 
the nunerical integration of the original equations by the method of 
Euler 121. 

We note that the description of the numerical procedure does not de- 
pend essentially on the actual form of the formulas (1.61 and therefore 
one may apply it also to other theories of creep, for exenple, the theory 
of hardening. 

3. ‘lhe solution of the wpseudo-thermalg problem of the theory of 
elasticity to which the integration of the equations of creep were re- 
duced may be constructed for example on the basis of (2.111 and (2.12) 
if the Green function of the corresponding elastic problem is known, In 
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a number of cases it is not difficult to obtain the required general so- 
lution based directly on the original equations. 

We shall consider, as an example, the unsteady creep of a twisted 
circular rod of radius a. 

EIy (2.4) one has 

bar = & AT,, + 6 (r) (3A) 

where 6(r) = 86s must be assuned to be an arbitrary function of the 
radius r. Settmng, as usually, Ay + =rAO and taking into consideration 
that the external torque is constant, we find from the condition of 
static equilibriun 

A7qz = G [f f 6 (r) rtdr - 6 (r)] 
0 

(3.2) 

4. Ue note that the studied numerical process may be generalized to 
the case of presence of plastic deformations. We will start from the 
equations of the theory of plastic flow 

de cc p = rD (T) (a 1 - a) dT, dyxvp = 20 (T) T,,dT (zyz) for T = T,, dT >O (4.1) 

snd 
dcxP I: deVP = . . .= dy,_./ = 0 forT<T, Ior T=T,,butdT<O. (4.2) 

Here Is is the maxiaasa value of the intensity T, attained during the 
entire loading history. 

Supplemsnting (2.4) by finite increnmnts of plastic deformation, cal- 
culated from (4.11, we obtain for the loading stage 

As, = cllAo, + c&,, +. . .+ c,A~,~!+ 6, (We) (4.3) 

where the coefficients CiL deterrains the state of stress at the beginning 
of the time interval At under consideration. 

‘Ihe instantaneous position of the boundary of the region of unloading 
is determined by the condition At = 0. In the region of unloading EJqua- 
tion (2.4) will apply. Ihe relation (4.3) represents the law of defona- 
ation of a certain anisotropic body. 
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